Einfügen von 2 Zeilen analog der Anleitung in die Datei

C:\Dokumente und Einstellungen\All Users\Anwendungsdaten\Autodesk\C3D 2010\deu\Pipes Catalog\Aecc Shared Content\AeccPartParamCfg.xml

1.)

```
<AeccDfParameter name="ACKb" desc="Höhe Teilfüllung"
context="FlowAnalysis_Höhe_Teilfüllung " index="0" datatype="Float"
usage="Double_SmallDistance" unit="m" visible="True" internal="True"/>
```

2.)

```
<AeccOptParam context="FlowAnalysis_ Höhe_Teilfüllung"/>
```

3.) Unter Civil nach Anleitung folgende neue Ausdrücke erstellen

Name 💌	Beschreibung	
見″ v_voll	Geschwindigkeit bei Vollfüllung	
🖳 🛛 v_teil	Geschwindigkeit bei Teilfüllung	
📃 r_hydraulisch	hydraulischer Radius bei Teilfüllung	
📃 Querschnittsfläche		
見 🛛 Q_voll	Durchfluss bei Vollfüllung	
見 🛛 Q_teil	Durchfluss bei Teilfüllung	
見 l_Umfang	hydraulischer bzw. benetzter Umfang	
見 alpha	Bogenmaß, pi=3,141593 entsprechen 180°	
🔜 A_teil	Fließfläche bei Teilfüllung	

4.) Formeln eintragen bzw. aus der Anleitung korrigieren

v_voll:

```
(-2*LOG10((2.51*1.31*10^(-6))/({Inner Pipe Diameter}*(2*9.81*Gefälle*{Inner
Pipe Diameter})^0.5)+({Betriebliche Rauheit}/({Inner Pipe
Diameter}*3.71))))*(2*9.81*Gefälle*{Inner Pipe Diameter})^0.5
```

v_teil:

```
v_voll*((r_hydraulisch/((pi/4*({Inner Pipe Diameter}^2))/(pi*{Inner Pipe
Diameter})))^(5/8))
```

r_hydraulisch:

A_teil/l_Umfang

Querschnittsfläche:

({Inner Pipe Diameter})^2*pi/4

Q_voll: Querschnittsfläche*v_voll*1000

Q_teil: v_teil*A_teil*1000

I_Umfang:

```
(pi*{Inner Pipe Diameter}/2*ASIN(({Höhe Teilfüllung}/({Inner Pipe
Diameter}))^0.5)*4)/pi
```

alpha:

```
ASIN(({Höhe Teilfüllung}/({Inner Pipe Diameter}))^0.5)*4
```

A_Teil:

0.5*(({Inner Pipe Diameter}/2)^2)*(pi*(alpha/pi)-SIN(alpha))

5.) Nach Belieben die Werte als Stile einblenden analog der Beschreibung aus der anderen Anleitung.

mfg Roman