

Spannungskonzepte im Vergleich

Sitzung der AG Q 1.1 "Berechnen und Gestalten" 1.12.2010 Beat Schmied, Schmied Engineering GmbH

DVS Beitrag 1.12.2010

Einleitung

Ein Teilnehmer des CADFEM Schweissnahtberechnungsseminars überprüfte an einem von ihm frei gewählten Beispiel die verschiedenen Strukturspannungsmethoden und verglich sie mit der Kerbspannung. Die daraus resultierenden Fragen nahm Schmied Engineering zum Anlass, die im Seminar vorgestellten Methoden an diesem Beispiel vertiefter zu untersuchen (\rightarrow Hauptuntersuchung).

Für den statischen Festigkeitsnachweis von Schweissnähten hat Schmied Engineering einen Ansatz entwickelt, wie aus dem Kerbspannungsmodell alle Informationen gewonnen werden können, um den Nachweis, wie von der FKM gefordert, mit den Strukturspannungen führen zu können. An 4 Nahtbeispielen wurde dieses Vorgehen getestet. Diese Modellbeispiele wurden nun ebenfalls verwendet, um die verschiedenen Konzepte miteinander zu vergleichen (\rightarrow weitere Überprüfungen).

In eigener Sache

Zur Person

- > Maschineningenieur FH
- > Dozent an der Berner Fachhochschule für Festigkeitslehre und FEM
- Co-Referent bei CADFEM im Seminar "Festigkeitsnachweise von Schweissnähten" zusammen mit Dr. Jürgen Rudolph.
- b.schmied@schmied-engineering.ch

Zur Firma

- Fokussiert auf Festigkeitsberechnungen
- Bürogemeinschaft mit Büro Mittelland der CADFEM Schweiz
- FE-Programm ANSYS Workbench 12.1
- www.schmied-engineering.ch

Inhaltsverzeichnis

1. In eigener Sache

2. Hauptuntersuchung an einem Volumenmodell

- Aufgabenstellung
- Modellbildung und Modellvariationen
- Untersuchte Strukturspannungsvarianten
- Kerbspannungskonzept
- Ergebnisse der einzelnen Konzepte
- Vergleich der Konzepte
- Modell ohne Naht = Nennspannung ?
- Zusammenfassung

3. Weitere Überprüfung an Testmodellen für statischen Nachweis

- Modelle und die Ergebnisse
- Erkenntnisse

Hauptuntersuchung am Volumenmodell

DVS Beitrag 1.12.2010

Aufgabenstellung

Zielsetzungen und Fragestellungen

- Vergleich der verschiedenen Strukturspannungskonzepte an einem komplexeren Nahtdetail unter kombinierter Belastung.
 Vorgaben und Einschränkungen bezüglich Modellierung ?
- > Vergleich der Ergebnisse mit dem Kerbspannungskonzept als Referenz
- Können umgekehrt die Strukturspannungen aus dem Kerbspannungsmodell ermittelt werden, um die Kerbspannung zu verifizieren ?
- Einfluss der Wurzelfreistellung auf die Strukturspannung am Nahtübergang ?
- Kann aus dem Modell direkt auf die Nennspannung geschlossen werden, wie dies die DVS 1612 als Möglichkeit aufzeigt: Bei FEM oder DMS haben die maßgebenden Nennspannungen in der Regel einen bestimmten Abstand zur Schweißnaht. Ein Richtwert für den Abstand zum Nahtübergang ist bei querbeanspruchten Schweißnähten 1 bis 1.5 Blechdicke.

Festlegungen

- Simulationen in ANSYS Workbench 12.1
- Beschränkung auf Volumenmodelle
- > Nur der Nahtübergang auf der Grundplatte wird untersucht.
- Linear-elastisches Materialverhalten
- Elemente mit quadratischem Verschiebungsansatz
- Bei der Hexaeder-Vernetzung wird die Workbench Option "Hexdominant" verwendet -> Randschichtelemente: Hexaeder, die inneren Elemente jedoch meist Tetraeder
- Verglichen werden die grössten Hauptspannungen. Nach FKM würde dies der Nachweisführung für volumenförmige Bauteile entsprechen.

Modellbildung und Modellvariationen

Modellbildung

FE-Modell

- Ausnutzen der Symmetrie
- > "Submodell" im Gesamtmodell integriert
- > Naht im Gesamtmodell modelliert
- Netzvariationen nur im "Submodell"

Modell ohne Schweissnaht

DVS Beitrag 1.12.2010

Naht als Fase 14x14

DVS Beitrag 1.12.2010

Naht als Viertelkreis R14

DVS Beitrag 1.12.2010

"Ideale" Netze

DVS Beitrag 1.12.2010

Strukturspannungsmethoden

Strukturspannungsmethoden

Hot-Spot und Haibach

Hot-Spot-Extrapolation

Haibach

Strukturspannungsmethoden

ASME und CAB

Varianten der Hot-Spot-Methode

Untersucht werden alle 3 von der IIW definierte Extrapolationen (Typ a). Die ersten beiden stellen Minimalanforderungen an die Elementgröße. Infolge des großen Steifigkeitssprungs sollte die quadratische Extrapolation die besseren Ergebnisse liefern.

Die dritte Extrapolation wird für grobe Netze empfohlen.

1)
$$\sigma_{hs_{1}} = 1.67 \cdot \sigma_{0.4 \cdot t} - 0.67 \cdot \sigma_{1.0 \cdot t}$$

2)
$$\sigma_{hs_2} = 2.52 \cdot \sigma_{0.4 \cdot t} - 2.24 \cdot \sigma_{0.9 \cdot t} + 0.72 \cdot \sigma_{1.4 \cdot t}$$

3)
$$\sigma_{hs_3} = 1.50 \cdot \sigma_{0.5 \cdot t} - 0.5 \cdot \sigma_{1.5 \cdot t}$$

Variante der ASME-Methode mit R1

Die Singularitäten in den Kanten der Fase verfälschen die Spannungslinearisierung. Je feiner das Netz, umso besser wird die Singularität herausgefiltert. Um die Singularität grundsätzlich zu vermeiden, bietet sich in Analogie zum Kerbspannungskonzept die Kantenverrundung mit R1 an. → Anforderungen an die Vernetzung ?

Netzqualitäten (nur Hexaeder gezeigt, Tetraeder ähnlich)

Hauptuntersuchung Kerbspannungskonzept

Kerbspannungskonzept

Umrechnung auf gleichwertige Strukturspannung

Nach FKM gilt für unbearbeitete Kehlnaht die FAT 100. Nach IIW ist jedoch eher FAT 90 zutreffend.

Strukturspannungen aus Kerbspannungsmodell

Der statische Nachweis von Schweißnähten hat nach FKM mit Strukturspannungen zu erfolgen. Erfolgt der Ermüdungsnachweis mit Kerbspannungen, verwendet Schmied Engineering die ASME-Linearisierung zum Ermitteln der Strukturspannung.

Der Pfadbeginn wird aus Gründen der Einfachheit (Pfaddefinition in ANSYS) an den Radiusübergang verlegt. Im Rahmen dieser Arbeit wird der Einfluss der Wurzelfreistellung auch für die anderen Methoden untersucht.

Kerbspannungskonzept

Strukturspannungen aus Kerbspannungsmodell

DVS Beitrag 1.12.2010

Ergebnisse der Methoden für verschiedene Nahtmodellierungen

Hot-Spot

Werte in MP	°a	Ohne Naht	Fase	1/4 Kreis
	H1	79	126	109
Hexaeder	H2	76	118	100
	H3	75	108	98
	T1	83	105	106
Tetraeder	T2	77	111	99
	Т3	75	107	98
"ideales" Netz		- 107 -		
"richtiger W	ert"	121	(IIW) - 134 (F	EKM)

Vergleich mit Extrapolation Nr. 1

$$\sigma_{hs_{1}} = 1.67 \cdot \sigma_{0.4 \cdot t} - 0.67 \cdot \sigma_{1.0 \cdot t}$$

- Ohne Naht eindeutig zu tiefe Werte.
- > Auch CAB-Verrundung ergibt zu tiefe Werte
- Bei Hexaeder-Vernetzung konvergiert Spannung zu einem zu tiefen Wert. Bei Tetraeder-Vernetzung ist kein Zusammenhang mit der Netzfeinheit erkennbar.

Hot-Spot - Extrapolationsvarianten für Fase

Werte in MPa		linear - fein (1)	quadratisch (2)	linear-grob (3)		
	H1	126	133	(117)		
Hexaeder	H2	118	127	108	Anwendungs-	
	H3	108	113	103	>bereich	
	Τ1	105	109	101	Netzqualität	
Tetraeder	T2	(111)	118	104		
	Т3	107	112	103		
"ideales" Netz		107	112	-		
"richtiger We	ert"	12	1 (IIW) - 134 (FK	M)		

- Hexaeder-Vernetzung konvergiert Tetraeder kein Zusammenhang
- > Hexaeder durchwegs besser als Tetraeder.
- \blacktriangleright Linear-grob \rightarrow H1 gutes Ergebnis; T1 sehr tiefer Wert
- > Quadratische Extrapolation 2) ergibt tatsächlich besserte Werte als 1).
- H2 &T2 bessere Ergebnisse als H3 & T3. Kann das Netz zu fein sein?

Hot-Spot - Modellierungsvarianten für Fase

Werte in MP	°a	Methode	Nur Fase	R1MS
	H1	linear - grob	117	101
Hexaeder	H2	quadratisch	127	112
	H3	quadratisch	113	108
	Τ1	linear - grob	101	98
Tetraeder	T2	quadratisch	118	111
	Т3	quadratisch	112	108
"richtiger W	ert"		121 (IIW) - 134 (FKM)	

Das Kerbspannungsmodell R1MS mit der Wurzelfreistellung ergibt 5 bis 15% tiefere Spannungen.

Haibach

Werte in MPa	Werte in MPa		Ohne Naht Fase		R1MS			
	H1	78	124	109	113			
Hexaeder	H2	77	128	103	110			
	H3	76	117	97	110			
	T1	80	104	104	107			
Tetraeder	T2	77	118	101	111			
	Т3	76	119	97	112			
"ideales" Netz		- 113 -						
"richtiger Wert"			121 (IIW) - 134 (FKM)					

- > Ohne Naht eindeutig zu tiefe Werte
- > Auch CAB-Verrundung ergibt zu tiefe Werte
- \succ Keine eindeutige Netzabhängigkeit \rightarrow kann das Netz zu fein sein?
- > Das Kerbspannungsmodell R1MS ergibt 5 bis 15% tiefere Spannungen.

ASME

Werte in MPa		Ohne Naht	Fase	Fase + R1	R1MS	1/4 Kreis	
	H1	85	112	119	123	113	
Hexaeder	H2	88	119	123	119	110	
	H3	87	123	122	117	110	
	Τ1	85	116	121	114	116	
Tetraeder	T2	88	119	120	115	110	
	Т3	87	123	121	118	110	
"ideales" Netz		-	- 122 122 -				
"richtiger Wert"			121	(IIW) - 134 (F	EKM)		

- ohne Naht eindeutig zu tiefe Werte, genauso CAB-Verrundung
- bei der einfachen Fase konvergieren beide Elementtypen
- > ohne R1 ergibt das grobe Netz zu tiefe Werte (Singularität)
- sehr gute Übereinstimmung mit IIW
- das Kerbspannungsmodell R1MS ergibt nur leicht geringere Werte

CAB

Werte in MF	°a	1/4 Kreis
	H1	123
Hexaeder	H2	123
	H3	122
	T1	127
Tetraeder	T2	120
	Т3	123
"ideales" Netz		122
"richtiger W	ert″	121 (IIW) - 134 (FKM)

- Hexaeder-Vernetzung ergibt bereits beim groben Netz den idealen Wert. Die Tetraeder-Vernetzung stellt leicht höhere Ansprüche.
- > Sehr gute Übereinstimmung mit IIW.

Vergleich der Nahtmodellierungen

Ohne Nahtmodellierung

Werte in MP	'a	Hot-Spot ¹⁾	Spot ¹⁾ Haibach ASME		CAB
	H1	79	78	85	_
Hexaeder	H2	76	77	88	_
	H3	75	76	87	_
	Τ1	83	80	85	_
Tetraeder	T2	77	77	88	_
	Т3	75	76	87	_
"richtiger Wert"			121 (IIW) -	134 (FKM)	

¹⁾ Lineare Extrapolation σ_{hs} 1

Die Werte sind deutlich zu tief und dürfen nicht als Strukturspannungen verstanden werden \rightarrow die Naht ist zu modellieren.

Naht als Fase

Werte in MF	Pa 🛛	Hot-Spot Haibach		ASME	ASME R1
	H1	117	124	112	119
Hexaeder	H2	127	128	119	123
	H3	113	117	123	122
	T1	101	104	116	121
Tetraeder	T2	118	118	119	120
	Т3	112	119	123	121
"richtiger Wert"			121 (IIW) -	134 (FKM)	

- Hot-Spot ohne klaren Zusammenhang mit Netzqualität.
- > Haibach bedingt bei Tetraeder eine minimale Netzqualität.
- ASME bedingt infolge der Singularität eine minimale Netzqualität. Wird die Kante mit R1 verrundet, ergeben schon grobe Netze gute Ergebnisse.

Naht als Eckradius R14

Werte in MPa		Hot-Spot	Haibach	ASME	CAB
	H1	109	109	113	123
Hexaeder	H2	100	103	110	123
	H3	98	97	110	122
	T1	106	104	116	127
Tetraeder	Т2	99	101	110	120
	Т3	98	97	110	123
"richtiger Wert"			121 (IIW) -	134 (FKM)	

Die Annäherung der Nahtgeometrie durch einen Kreis bleibt der CAB-Methode vorbehalten. Alle anderen Methoden ergeben zu tiefe Werte. CAB zeigt bloß eine geringe Abhängigkeit von der Netzqualität.

Kerbspannungsmodell

Werte in MP	°a	Hot-Spot 2 Hot-Spot 3		Haibach	ASME		
	H1	_	101 (117)	113 (124)	123 (112)		
Hexaeder	H2	112 (127)	_	110 (128)	119 (119)		
	H3	108 (113)	_	110 (117)	117 (123)		
	T1	_	98 (101)	107 (104)	114 (116)		
Tetraeder	T2	101 (118)	_	111 (118)	115 (119)		
	T3	98 (112)	_	112 (119)	118 (123)		
"ideales Netz"		108 - 108 117					
"richtiger Wert"		121 (IIW) - 134 (FKM)					

- Werte in Klammern: Modell mit einfacher Fase
- Die Wurzelfreistellung reduziert durchwegs die Spannungen im Nahtübergang.

Modell ohne Naht → Nennspannungen ?

Nennspannungsnachweis

In Frage kommende FAT-Klassen:

Oberer Grenzwert, da unbelastete Rippe:

Äquivalente Nennspannung

Die FAT-Klasse des Nahtdetails 325 ist vom τ/σ -Verhältnis abhängig. Die Schubspannung liegt bei ca. 25% der Normalspannung.

FAT-Klasse für Kerbspannung

FAT-Klasse für unterbrochene, längsbelastete Kehlnaht

max. Hauptspannung nach Kerbspannungsmethode

gleichwertige Nennspannung

FAT_{kerb} := 225
FAT₃₂₅ := 56
$$\frac{\tau}{\sigma} = 0.2 - 0.3$$

 σ_{1_kerb} := 302·MPa
 $\sigma_{1_nenn} := \frac{FAT_{325}}{FAT_{kerb}} \cdot \sigma_{1_kerb} = 75$ MPa

Ergebnisse aus Modell ohne Naht

Gemäss DVS 1612 kann bei querbeanspruchten Nähten im Abstand 1.0 - 1.5 x Blechdicke vom Nahtübergang die Nennspannung abgegriffen werden. Im vorliegenden Fall wären dies 15 - 22.5 mm.

Werte in MPa	Hot-Spot	Haibach	ASME	DVS 1xt	DVS 1.5xt
Hexaeder	75-79	76-78	85-87	61-62	46
Tetraeder	75-83	76-80	85-88	61-62	46-48
"richtiger Wert"			ca. 75		

- Hot-Spot und Haibach ergeben eine sehr gute Übereinstimmung
- > ASME gute, konservative Übereinstimmung
- > DVS-Richtwert ist im vorliegenden Fall ungeeignet.

Zusammenfassung

Zusammenfassung

Erkenntnisse zur Modellierung

- Ohne Nahtmodellierung dürfen im vorliegenden Fall die ermittelten Werte als Nennspannung interpretiert werden. Die allgemeine Anwendbarkeit dieses Ansatzes ist jedoch noch vertieft zu prüfen.
- Für den Strukturspannungsnachweis ist die Naht unbedingt zu modellieren. Die runde Naht bleibt dabei der CAB-Methode vorbehalten.
- Wird für ASME der Nahtübergang mit R1 verrundet, liefert bereits ein grobes Netz sehr gute Werte.
- Mit ASME werden aus dem Kerbspannungsmodell adäquate Strukturspannungen ermittelt (statischer Festigkeitsnachweis). Haibach und Hot-Spot liefern jedoch etwas zu tiefe Werte.
- Die Hexaeder-Vernetzung ist keine Bedingung. Die Tetraeder erfordern jedoch in der Regel, außer bei CAB, etwas feinere Netze.

Weitere Überprüfungen

DVS Beitrag 1.12.2010

Konzept für statischen Nachweis

- Gemäss FKM-Richtlinie 2005 ist der statische Nachweis mit der Strukturspannung zu führen.
- Für die Nahtwurzel ist bisher jedoch kein Strukturspannungskonzept anerkannt -> für Ermüdungsnachweis immer Kerbspannungsmodell erforderlich.
- Schmied Engineering suchte ein Vorgehen, um aus dem Kerbspannungsmodell alle Informationen f
 ür den FKM konformen, statischen Nachweis zu generieren:
 - Ansatz mit Innenlinearisierung nach ASME auch für Nahtwurzel
 - plastische Formzahl
- > Konzeptüberprüfung an 4 Nahtdetails unter verschiedenen Lasten
 - 2D-Modell, ebener Dehnungszustand
 - Variation der Blechdicken von 2 bis 20 mm
 - Modellierung entsprechend Kerbspannungskonzept
 - Referenzradien 0.05 / 0.3 / 1 mm (DVS-Berichte Band 256)

Vergleich der Spannungskonzepte

- \blacktriangleright Umrechnung der Kerbspannung σ_{K} entsprechend den FAT-Klassen auf die Strukturspannung σ_{S}
- Kehlnaht als Fase: Strukturspannung Hot-Spot, Haibach, ASME
- Kehlnaht als Viertelkreis: Strukturspannung CAB
- Ohne Kehlnaht: Nennspannung nach Hot-Spot, Haibach, ASME
- Ausgewertet wird die absolut grösste Hauptspannung

Modell 1: Stumpfnaht - Fx

Strukturspannungsmodell ohne Radius
 FAT-Klasse für Strukturspannung: 100
 σ_z = 100 MPa

Geometrie			Kerbspannung			Strukturspannung									
t	F _x	r	FAT	$\sigma_{\!K}$	$\sigma_{\! m s}$	Hot-Spot	Haibach	ASME	CAB						
mm	Ν	mm		MPa	MPa	MPa	MPa	MPa	MPa						
2	200	0.05	620	244	39										
F	500	0.05	050	308	49										
3	500		320	197	62	101 104		101							
10	1000	0.3		520	520	520	520	520	520	320	233	73	101-104	104	100-102 ¹⁾
10	1000	1.0	225	175	78		104								
20	2000	1.0	223	206	92		111								

Modell 1: Stumpfnaht - M_Z

Strukturspannungsmodell ohne Radius
 FAT-Klasse für Strukturspannung: 100
 σ_b = 100 MPa

Geometrie			Ker	bspann	ung	Strukturspannung				
t	M _z	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Nmm	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	67	0.05	620	232	37					
F	417	0.05	030	292	47	100-101		100-101 100-104 ¹⁾		
5		0.3	320	187	59					
10	1667			221	69		101			
10	1667	1.0	225	166	74		101			
20	6667	1.0	223	195	87		106			

Modell 2: Stumpfnaht - F_x

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 100
- $\succ \sigma_z = 100 MPa$

Geometrie			Kerbspannung			Strukturspannung				
t	F _x	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Ν	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	200	0.05	620	297	47					
5	500		050	395	63	100-102		100-102 101-104 ¹⁾	112-113	
5		0.3	320	229	72					
10	1000			281	88		103			
10		1.0	225	199	88		103			
20	2000	1.0		242	108		111			

Modell 2: Stumpfnaht - M_Z

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 100
- $\succ \sigma_b = 100 MPa$

C	Geometr	rie	Ker	bspann	ung	Strukturspannung				
t	M _z	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Nmm	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	67	0.05	620	340	54					
F	417		030	454	72	99-100		100-102 102-106 ⁻¹⁾	112-113	
3		0.2	220	259	81					
10	1667	0.3	320	320	100		103			
		1.0	225	221	99		103			
20	6667	1.0		273	121		111			

Modell 3: Einseitige Kehlnaht - F_X

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 90
- $\succ \sigma_b = 120 MPa / \tau_s = 10 MPa$

Geometrie			Kerbspannung			Strukturspannung				
t	F_X	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Ν	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	200	0.05	620	498	71					
F	500	0.05	030	712	102	114-120		124-130 134-145 ¹⁾	131-137	
5		0.3	320	417	117					
10	1000			509	143		108			
10	1000	1 0		369	148		108			
20	2000	1.0	223	438	175		129			

Modell 3: Einseitige Kehlnaht - F_Y

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 90
- $\succ \sigma_z = 100 MPa$

Geometrie			Kerbspannung			Strukturspannung				
t	F_{Y}	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Ν	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	200	0.05	620	167	24					
F	500		030	165	24	94-98		100-101 102-104 ¹⁾	102-103	
5		0.3	320	126	36					
10	1000			134	38		98			
	1000	1.0		121	49		98			
20	2000	1.0	223	128	51		102			

Modell 3: Einseitige Kehlnaht - M_Z

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 90
- $\succ \sigma_b = 100 MPa$

Geometrie			Ker	bspann	ung	Strukturspannung				
t	M _z	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Nmm	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	67	0.05	620	377	54					
L	417	0.05	050	522	75	99-101		101-102 105-110 ⁻¹⁾	112-113	
5		0.3	320	302	85					
10	1667			371	104		103			
10		1.0	225	265	106		103			
20	6667	1.0	223	318	127		112			

Modell 4: Kreuzstoss mit Kehlnaht - F_X

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 90
- $\succ \sigma_b = 120 MPa / \tau_s = 10 MPa$

Geometrie			Kerbspannung			Strukturspannung				
t	F_X	R	FAT	$\sigma_{\!K}$	$\sigma_{ m s}$	Hot-Spot	Haibach	ASME	CAB	
mm	Ν	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	200	0.05	620	364	52					
_	500		030	503	72	119-120		119-120 120-128 ¹⁾	132-133	
5		0.3	320	288	81					
10	1000			357	101		107			
		1.0	225	245	98		107			
20	2000	1.0		304	122		122			

Modell 4: Kreuzstoss mit Kehlnaht - F_Y

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 90
- $\succ \sigma_z = 100 MPa$

(Geometr	rie	Kerbspannung			Strukturspannung				
t	F _Y	R	FAT	$\sigma_{\!K}$	$\sigma_{\! m S}$	Hot-Spot	Haibach	ASME	CAB	
mm	N	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	200	0.05	0.05	620	450	65				
F	500		030	616	88	97-101		111 121-126 ¹⁾	115-117	
5		0.3	320	357	101					
10	1000			439	124		105			
10	1000	1 0		311	124		105			
20	2000	1.0	223	376	150		120			

Modell 4: Kreuzstoss mit Kehlnaht - M_Z

- Strukturspannungsmodell ohne
 Wurzelfreistellung und ohne Radien
- > FAT-Klasse für Strukturspannung: 90
- $\succ \sigma_b = 100 MPa$

Geometrie			Kerbspannung			Strukturspannung				
t	M _z	R	FAT	$\sigma_{\!K}$	σ_{s}	Hot-Spot	Haibach	ASME	CAB	
mm	Nmm	mm		MPa	MPa	MPa	MPa	MPa	MPa	
2	67	0.05	0.05	620	294	42				
F	417		030	390	56	99-100		98-99 100-105 ¹⁾	109	
5		0.2	220	225	63					
10	1667	0.3	320	278	78		101			
10	1007	1.0	225	193	77		101			
20	6667	1.0	223	238	95		107			

Erkenntnisse

- Beim Kerbspannungsmodell streuen die Ergebnisse für den Referenzradius R1 stark. Die kleineren Radien R0.3 und R0.05 unterschätzen die Spannungen meist massiv.
- Die Strukturspannungskonzepte können die Kerbwirkung der verschiedenen Referenzradien gut "herausfiltern".
- ➢ Die Strukturspannungskonzepte bilden die analytischen Werte meist innerhalb $\pm 10\%$ ab. Nur vereinzelt liegt die Streuung bei $\pm 20\%$.
- > Die CAB-Methode liefert im Vergleich durchwegs konservative Werte.
- Erfolgt die Innenlinearisierung im Kerbspannungsmodell ist die Spannung immer konservativer, als jene aus dem Modell mit Fase (Widerspruch zum erst gezeigten Beispiel).
- Wird die Schweissnaht NICHT modelliert, liefern sämtliche Strukturspannungskonzepte die Nennspannung auf 1 MPa genau.